Matlab program solves problem 6-73 of the textbook
"Mechanics of Materials", 8th. edition, by Hibbeler.
Applying the symmetry of the problem, only half of the beam
is calculated.
% prob6_73.m
% Ricardo E. Avila, Sep. 6, 2013% Universidad Autonoma de Ciudad Juarez, Mexico
clc
cleardisp(' ')
disp('Problem 6-73, Hibbeler, "Mechanics of Materials", 8th. ed.')
% Data
input section
% The
units of the problem are US customary, not SI (Lb, inch)
% A beam
supports a uniformly varying load applied on 24 ft. span length. % At midpoint of beam load is 500 Lb/ft, going down to 0 at both ends.
% Only half the problem is solved (12 ft.), using symmetry of beam.
I = 152.34; % Moment of inertia, in^4, steel
beam section.
E = 29e6; % Elastic modulus, Lb/in^2,
ASTM A-36 steel delta_x = .5; % Increment for discretization of x axis.
x = (0: delta_x: 144)'; % Generate column array for x-axis.
N = size(x,
1); % Size of
the x-axis discretization
V = zeros(N,
1); % Shear force function of
x.
M = V; % Bending
moment function of x. y = V; % Coordinates of elastic curve.
C1 = -1250 * 12^4; % Integration constant. (dy/dx) = 0 @ x = 144 in.
% Data
processing section
for index = 1:
N; % For every discrete point along
x.
% First half of the beam, 0 < x
< 144 (inch)V(index) = 3000 - 1.446759259259259e-001 * x(index)^2;
M(index) = 3000 * x(index) - 4.822530864197531e-002 * x(index)^3;
y(index) = 500 * x(index)^3 ...
- 2.411265432098765e-003 * x(index)^5 + C1 * x(index);
end
y = y / (E*I); % E and I
are constants, through the beam length.
% Data
post-processing section
% Shear
force diagram
figure(1)plot(x,V, 'b', 'linewidth', 2.5)
grid
xlabel('x, inch')
ylabel('Shear force, Lb')
title('Shear force diagram')
axis tight
% Bending
moment diagram
figure(2)plot(x,M, 'r', 'linewidth', 2.5)
grid
xlabel('x, inch')
ylabel('Bending moment, Lb-in')
title('Bending Moment diagram')
axis tight
% Beam
deflection: elastic curve
figure(3)plot(x,y, 'k', 'linewidth', 2.5)
grid
xlabel('x, inch')
ylabel('Elastic Curve, in')
title('Bending Deflection')
axis tight
format long e
disp('Maximum
deflection of beam: ')disp(min(y))
disp(' ')
format short
disp('***
Successful execution of program ***')
% end of
Matlab program
_____________________________________________________________________Problem 6-73, Hibbeler, "Mechanics of Materials", 8th. ed.
Maximum deflection of beam:
-5.407113851502764e-001
*** Successful execution of program ***
_____________________________________________________________________
figure(1)
figure(2)
figure(3)
No comments:
Post a Comment