"Mechanics of Materials", 8th. edition
% hibbeler12_121.m
% Luis Adan Villa Chaparro / Ricardo E. Avila Montoya% 3 Mar. 2014 / ricardo_avila@hotmail.com
clc
clear
disp(' ')
disp('Problem
12-121, Hibbeler''s ') disp('"Mechanics of Materials", 8th. ed.')
disp(' ')
% The beam
is hyperstatic, so the method of superposition
% has to
be used in order to find the reactions at the % supports of the shaft.
L = 4; % Total length of beam
dx = L/400; % Division is 1 centimeter
x = [0 : dx : L]'; % x-axis is defined
n = size(x, 1); % Size of the x-axis column of data
V = zeros(n, 1); % Initialize structures to data
M = V;
Y = V;
% Each
half of the beam exerts a moment of 150 N-m
% on the
other half, in order to achieve dy/dx = 0 @ x = 2, % otherwise the shaft will break in two parts, if the
% derivative were not countinuous at the middle of the shaft.
% The
necessary moment of 150 N-m is found by superposition,
% using
the formulas at appendix C of the textbook.
% Support
force on left end: 125 N
% Support
force on middle of shaft: 550 N % Support force on right end: 125 N
% Data
processing
for index = 1 : nV(index) = 125 ;
M(index) = 125*x(index);
Y(index) = 20.83333*x(index)^3 - 50*x(index);
if
x(index) >= 1
V(index) = V(index) - 400;M(index) = M(index) - 400*(x(index)-1);
Y(index)= Y(index) - 66.66666*(x(index)-1)^3;
if
x(index) >= 2
V(index) = V(index) + 550;M(index) = M(index) + 550*(x(index)-2);
Y(index) = Y(index) + 91.66666*(x(index)-2)^3;
if
x(index) >= 3
V(index) = V(index)-400;M(index) = M(index) - 400*(x(index)-3);
Y(index) = Y(index) - 66.66666*(x(index)-3)^3;
end
end
end
end
% Material
and geometric properties are temporarily made unit value:
E = 1; % Elastic constant is unit value
(not calculated) I = 1; % Moment of Inertia is unit value (not calculated)
%
Post-processing
figure(1)plot(x, V, 'r', 'linewidth', 3)
xlabel('x, m')
ylabel('V(x), N')
grid
title('Shear Force Diagram')
figure(2)
plot(x, M, 'b', 'linewidth', 3)grid
xlabel('x, m')
ylabel('M(x), m')
title('Bending Moment Diagram')
figure(3)
plot(x, Y, 'b', 'linewidth', 3)grid
xlabel('x, m')
title('Elastic Curve Diagram')
disp(' ')
disp('_______________________________________')disp('Successful execution of Matlab program.')
% end of
Matlab program
figure(1)
figure(2)
figure(3)
The deflection of the beam is exaggerated because E=1, I=1. It is necessary to design
the beam, in order to have a diameter determined, and to select a proper material,
in order to determine proper values for E and I.